Electric Cars: The Basics
For those of you new to zero-emission electric driving, we recommend a read of the following articles:
Sign up to the newsletter
The Volvo S90 Recharge Plug-In Hybrid Saloon
Sweden has created its fair share of global brands, but none with a reputation as good as Volvo Cars, when it comes to passenger safety. Volvo cars is an automotive manufacturer based in Gothenburg, Sweden. The Volvo Group has a long history of success and was established in 1927. The Volvo electric vehicle (EV) current portfolio includes:
- C40 Recharge Pure Electric Crossover
- EX30 Pure Electric SUV
- Volvo EX90 Pure Electric SUV
- XC40 Recharge Pure Electric SUV
- XC40 Recharge Plug-in Hybrid SUV
- XC60 Recharge Plug-in Hybrid SUV
- XC90 Recharge Plug-in Hybrid SUV
- S60 Recharge Plug-in Hybrid Saloon
- S90 Recharge Plug-in Hybrid Saloon
- V60 Recharge Plug-in Hybrid Estate
- V90 Recharge Plug-in Hybrid Estate
The Volvo S90 conventional petrol and diesel saloon variants have been available since 2016. The first generation (Volvo 900 Series) were manufactured between 1990 and 1998. The S90 saloon was launched in 2016 at the International Auto Show in Detroit. The vehicle was given a facelift in 2020. As with other Volvo models, the company has also introduced the S90 as a lower emission plug-in hybrid electric vehicle (PHEV).
Without an iota of doubt, the Volvo S90 Recharge PHEV has a compelling proposition, for both private and company-car drivers. The S90 electric vehicle (EV) has a 18.8 kWh onboard EV battery, with a claimed emission-free electric range up to 88 km.
Even, adjusting for real-world driving, the S90 plug-in electric car should be able to deliver close to 75 km on pure electric mode. This is above average, compared to other plug-in hybrid electric cars, which tend to deliver less than 50 zero-emission km.
Given the excellent EV range, most families and company-car drivers, can take advantage of the e-mode to lower motoring bills. Using the Volvo mid-sized saloon electric car for city and motorway driving, can achieve real financial savings.
The Volvo S90 PHEV, further strengthens its ultra-low cost motoring, with ultra-low tailpipe emissions. The automotive manufacturer claims tailpipe emissions as low as 18g CO2/km, which certainly will help reduce the local air pollution.
Of course, driving on e-mode i.e. using the electric motor and onboard EV battery, will result in zero-tailpipe emissions. Bottom-line, electric driving is good for the environment and good for the wallet.
However, the Volvo plug-in electric car disappoints in terms of charging capability. The EV has an onboard charger limited to 3.6 kW and is not capable of DC charging. For the price tag and EV battery size, we would have expected DC charging capability and an onboard charger up to 7.4 kW.
The Volvo electric vehicle can be charged 0% to 100% via a dedicated EV charging station in 5 hours. We at e-zoomed recommend a ‘topping up’ approach to EV charging. This way, EV range is available to use and regular charging also improves the long-term maintenance of the onboard EV battery. Volvo offers a 8 years or 160,000 km warranty.
Despite the placement of the onboard EV battery, practicality has not been compromised. The S90 plug-in offers a 461 L boot and ample space for passengers. The luxurious interior has been finished to a high standard and offers sustainable materials for the cabin.
The EV also offers a generous level of standard equipment, safety features and technology. These include: google built in, 360° camera, BLIS and cross traffic alert, keyless entry and keyless start, advanced air purifier, intelligent safety assistance and more.
The all-wheel drive S90 plug-in electric saloon car combines the T8 powertrain with an electric motor. The EV can achieve 0-100 km/h in 4.8 seconds (455 hp). The top speed of the EV is 180 km/h. Decent performance for city and motorway driving.
Bottom-line, electric driving is good for the environment and the wallet! The Volvo PHEV is not available in India.
PROS | CONS |
---|---|
Very useful electric range to lower motoring costs | Cheaper PHEV options available |
High quality interior with a good level of standard equipment | Not capable of DC charging |
Good fuel economy | Onboard charger limited to 3.6 kW |
The Volvo S90 Recharge Plug-In Hybrid Saloon (credit: Volvo)
At A Glance | |
---|---|
EV Type: | Plug-In Hybrid Electric Vehicle (PHEV) |
Body Type: | Saloon |
Engine: | Electric/ Petrol |
Available In India: | No |
Trims (1 Option) |
---|
Volvo S90 Recharge (Rs N/A) |
EV Battery & Emissions | |
---|---|
EV Battery Type: | Lithium-ion |
EV Battery Capacity: | Available in one battery size: 18.8 kWh |
Charging: | DC charging not available. Onboard charger: 3.6 kW AC (0% – 100%: 5 hrs) |
Charge Port: | Type 2 |
EV Cable Type: | Type 2 |
Tailpipe Emissions: | 18g (CO2/km) |
Battery Warranty: | 8 years or 160,000 km |
Charging Times (Overview) | |
---|---|
Slow charging AC (3 kW – 3.6 kW): | 6 – 12 hours (dependent on size of EV battery & SOC) |
Fast charging AC (7 kW – 22 kW): | 3 – 8 hours (dependent on size of EV battery & SoC) |
Rapid charging AC (43 kW): | 0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC) |
Rapid charging DC (50 kW+): | 0-80%: 20 mins to 60 mins (dependent on size of EV battery & SoC) |
Ultra rapid charging DC (150 kW+): | 0-80% : 20 mins to 40 mins (dependent on size of EV battery & SoC) |
Tesla Supercharger (120 kW – 250 kW): | 0-80%: up to 25 mins (dependent on size of EV battery & SoC) |
- Note 1: SoC: state of charge
Dimensions | |
---|---|
Height (mm): | 1446 |
Width (mm): | 1895 |
Length (mm): | 4963 |
Wheelbase (mm): | 2941 |
Turning Circle (m): | 11.4 |
Boot Space (L): | 461 |
Volvo S90 Plug-in Hybrid (T8 AWD plug-in hybrid) | |
---|---|
EV Battery Capacity: | 18.8 kWh |
Pure Electric Range (WLTP): | 88 km |
Electric Energy Consumption (kWh/100km): | 17.5 |
Fuel Consumption (l/100km): | 0.9 |
Charging: | DC charging not available. Onboard charger: 3.6 kW AC (0% – 100%: 5 hrs) |
Top Speed: | 180 km/h |
0-100 km/h: | 4.8 seconds |
Drive: | All-wheel drive (AWD) |
Electric Motor (kW): | N/A |
Horsepower (hp): | 455 |
Torque (Nm): | 400 |
Transmission: | Automatic |
Seats: | 5 |
Doors: | 4 |
Gross Vehicle Weight (kg): | 2,590 |
Colours: | 7 |
NCAP Safety Rating: | Five-Star |
Benefits Of Electric Driving
The benefits of electric driving are many, with significant advantageous over petrol and diesel internal combustion (ICE) engine cars, for all stakeholders. These benefits include:
- Lower to zero-tailpipe emissions
- Lower running costs
- Lower taxes
- Lower maintenance costs
- Lower noise pollution
- Convenience of charging at home
- Smoother drive
- Instant torque for acceleration
- Lower environmental impact
Below we have highlighted three of our favourite benefits of owning and driving an electric car.
Improved Air Quality
Battery-electric vehicles (BEVs) or all-electric vehicles do not have tailpipe pollution. In fact, such electric cars do not even have a tailpipe! Zero-emission electric driving has a real and immediate impact on local air quality i.e. improving air quality. While, plug-in hybrid electric vehicles (PHEVs) have reduced tailpipe pollution compared to traditional petrol and diesel vehicles. The sooner we migrate to electric driving in India, the sooner we can improve air quality for all our cities, towns and villages. Lower air pollution will also result in a reduced number of health issues arising from inhaling toxic pollutants.
Lower Maintenance & Running Costs
Electric vehicles (EVs) are cheaper to maintain and drive. Pure electric cars have far fewer moving parts compared to internal combustion engine (ICE) vehicles. The fewer the moving parts, the lower the probability of repair and maintenance. Moreover charging an electric car can cost as little Rs 50 per 100 kilometres! A full charge can cost between Rs 100 and Rs 200. Significantly cheaper than filling a tank of petrol or diesel!
Lower Noise Pollution
Yes, we in India are far more resilient to noise pollution than those living in the western world. We have certainly got used to horns blaring and engines roaring, day and night. But that does not mean we enjoy or welcome noise pollution. In fact, quite the opposite!
Though much focus has been on the advantageous of ‘air quality’ with an electric car, just as important, is the benefit of lower noise pollution. In fact, pure electric cars are silent, with an inbuilt ‘sound booster’ to increase road safety for pedestrians.
As our cities in India and across the world become densely populated with cars, the significant negative impact on ‘quality of life’ as a result of increased noise pollution from petrol and diesel vehicles, is just as dangerous, as increased air pollution. Battery-electric cars are a perfect solution in reducing noise pollution and increasing the living standards for us all. Of course, one can only hope that the self inflicted ‘horn blaring’ pollution will also reduce!
Types Of Electric Vehicles (EVs)
“Electric vehicle” is an umbrella term, and a broad one at that. There are a number of different types of electric vehicles (EVs), each with its distinct characteristics and advantages. These include:
- BEVs: Battery-electric vehicles (pure electric)
- PHEVs: Plug-in hybrid electric vehicles (electric and internal combustion engine (ICE) combined)
- MHEVs: Mild hybrid electric vehicles (internal combustion engine (gasoline or diesel) along with regenerative braking)
- FCEVs: Fuel cell electric vehicle (electric with hydrogen as fuel)
The above “types” are powered either entirely or partially by electric energy and have different environmental impacts.
Battery-Electric Vehicles (BEVs)
Battery-electric vehicles (BEVs), also known as pure electric vehicles, are powered entirely by electricity (i.e. the vehicle does not have a conventional internal combustion engine). BEVs have zero-tailpipe emissions and help improve local air quality.
BEVs are also very economical to drive. A BEV can cost as little as Rs 50 per 100 kilometres to drive. Examples of best-selling EVs include, the all-electric Tesla Model 3 and the all-electric Renault Zoe.
A BEV is charged by plugging in the electric vehicle to a dedicated electric car charging station (home or public charging stations). BEVs are well suited for those living in towns, cities and urban centres. Of course, battery-electric vehicles are also suitable for those living in rural settings.
Plug-In Hybrid Electric Vehicles (PHEVs)
Plug-in hybrid electric vehicles (PHEVs) differ from battery-electric vehicles (BEVs), in that, PHEVs use both a conventional internal combustion engine (ICE) and an electric engine for propulsion. Plug-in hybrid vehicles combine the advantages of electric driving and internal combustion engine driving.
On shorter distances, the PHEV uses the electric mode to drive emission-free, using the on-board EV battery and regenerative braking. For longer distances, the plug-in hybrid electric vehicles switches to using the internal combustion engine.
With a PHEV, the vehicle can cost as little Rs 50 per 100 kilometres to drive on e-mode, without any tailpipe pollution, and also be driven long-distances, without the fear of range anxiety! Most PHEVs have an EV battery of up to 15 kWh and can achieve a zero-emission electric range of up to 50 kilometres.
No wonder PHEVs are fast becoming popular globally, with much potential or India. Like a BEV, the plug-in hybrid electric vehicle is charged by using an external power source (EV charging point) for charging.
PHEVs are suitable for those that drive long-distances on a regular basis but want to lower the negative environmental impact from tailpipe pollution. PHEVs are also suitable for those individuals and families that are seeking to save money by taking advantage of electric driving. The Volvo XC40 PHEV and the Volkswagen Golf 8 are good examples of PHEVs.
Mild Hybrid Electric Vehicles (MHEVs)
Mild hybrid electric vehicles (MHEVs) are a limited form of electric driving. These vehicles also use hybrid technologies (electric driving and internal combustion engine), but the EV battery is much smaller than a BEV or PHEV. Moreover, in a mild hybrid, the EV battery cannot be charged via an external source (i.e. EV charging station).
In a MHEV, the battery is charged by capturing the energy released during braking, a process known as regenerative braking. MHEVs have lower tailpipe emissions, and are more economical to own, run and maintain than petrol and diesel cars.
MHEVs are a better option than a petrol or diesel car, but not as good an option as a BEV or PHEV. Mild hybrids are well suited for those living in regions with limited charging infrastructure. Again, MHEVs have great potential in India, given the limited public EV charging infrastructure.
The Toyota Prius is a good example of a mild hybrid electric vehicle.
Fuel Cell Electric Vehicles (FCEVs)
Fuel Cell Electric Vehicles (FCEVs) also called hydrogen fuel cell vehicles, have a fuel cell stack that uses hydrogen to generate the electricity needed to power the electric vehicle. The fuel cell generates electricity and pure water vapour that can escape via the tailpipe.
It is capable of generating electricity as long as there is a steady supply of hydrogen. Fuel cell electric vehicles can be refuelled with hydrogen at purpose built filling stations. Filling an FEC takes no more than five minutes.
FCEVs have a range of about 500 kilometers or more between refueling. Today, the only and major limitation is the very limited hydrogen refuelling station network globally. The Toyota Mirai FCEV is a good example of this type of EV.
While e-zoomed uses reasonable efforts to provide accurate and up-to-date information, some of the information provided is gathered from third parties and has not been independently verified by e-zoomed. While the information from the third party sources is believed to be reliable, no warranty, express or implied, is made by e-zoomed regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information. This disclaimer applies to both isolated and aggregate uses of this information.